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Abstrad. The reduced notation for ineducible representations of the symmetric group S. is 
interpreted in terms of symmetric formal series and vertex operatom, and is used to prove a 
number of p r o p i a  of reduced Kronecker prcducls and inner plethysms in M n-independent 
manner. Conditions for self-associativity of Kronecker prcducu and inner plethysms are 
established. Reduced inner plethysms are developed and applied to the question of non-simple 
phase groups among the s y m e h i c  S, and altemaling goups. 

1. Introduction 

The symmetric group S. plays an important role in all those areas of physics and chemistry 
involving permutational symmetry. These include high-symmetry molecules, symplectic 
models of nuclei and such esoteric topics as the classification of N-electron states of 
quantum dots. It is highly desirable to be able to develop stable results that are essentially 
n-independent. This is made possible by exploiting the reduced notation introduced long 
ago (Mumaghan 1938, Littlewood 1958a, b) and only recently made mathematically precise 
(Thibon 1991). The reduced notation supplies a relatively concise method of evaluating 
n-independent Kronecker products for the symmetric group (Butler and King 1973, Thibon 
1991). Extensions to Kronecker products involving projective (or spin) representations of 
the symmetric group have also been made (Luan Dehuai and Wyboume 1981, Salam and 
Wyboume 1989). 

Symmetrized Kronecker powers of representations of the symmetric group play an 
important role in nuclear physics applications (Kretzschmar 1960a.b. Vanagas 1971). in 
determining the symmetry propelties of 3 j  symbols for the symmetric group and its 
subgroups (Buller 1974, King 1974) and in determining branching rules for Lie groups 
where the symmetric group occurs as a finite subgroup (Salam and Wyboume 1989). 

In all the above problems Schur functions (S-functions) play a key role: for the 
Kronecker products, in the form of the Littlewood-Richardson rule for multiplying S- 
functions (Littlewood and Richardson 1934, Littlewood 1950) and in symmetrized powers, 
the inner plethysm of S-functions (Littlewood 1958a,b). For a modem account of S- 
functions the reader is referred to Macdonald (1979) and for inner plethysm in a Hopf 
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algebra structure to Scharf and Thibon (1992) and to Thibon (1991). Much of our notation 
is drawn from those sources and the original papers of Littlewood. 

In this paper we first address the problem of reduced notation in calculating Kronecker 
products for the symmetric group noting in particular the conditions for the resultant 
of a reduced Kronecker product to be self-associated. We then show how use of the 
reduced notation for Kronecker products can be used to uncover hitherto unnoticed unimodal 
distributions of multiplicities and to exhibit certain symmetries. We next show that reduced 
Kronecker products (A) * ( f i )  are self-associated if one of the partitions is a staircase partition 
and the other partition is at least self-conjugate. After that we take up the problem of 
evaluating reduced inner plethysms of S-functions and outline methods for their evaluation. 
We observe that certain reduced inner plethysms are self-associated. The reduced inner 
plethysms are then used to establish that for n 2 6 the symmetric groups S. are all non- 
simple phase groups (Derome 1966, van Zanten and & Vries 1973). Correspondingly 
we show that the alternating groups R, with n > 7 are also non-simple phase groups. 
An expansion of the reduced S-function (n) as a linear combination of inner plethysms 
involving only S-functions indexed by single hook partitions is next proved and a simple 
proof of the Butler-Booman theorem established. Finally, we discuss a number of special 
properties of S-functions indexed by staircase partitions and prove earlier inferred results. 

A remark about notation. In this paper, we shall freely mix the traditional notation of 
Littlewood (1950) with that of Macdonald (1979). which is more convenient for algebraic 
manipulations. So, the S-function corresponding to a partition A will be indifferently denoted 
by (A) or by SA. Other correspondences between the two systems will be explained when 
necessary. 

2. Kronecker products 

The resolution of the inner or internalproduct of two S-functions, say SA *sw with A, f i  k n 
such that 

is related to the character analysis for the symmetric group S, where 

with the coefficients cLw being non-negative integers and precisely the same integers that 
arise in the resolution of the Kronecker product of two irreducible representations of S, 
labelled by the same pair of partitions. Much effort has gone into the development of 
algorithms for calculating the coefficients c;,, (cf Murnaghan 1938, Littlewood 1958a.b. 
Butler and King 1973, Thibon 1991). Remmel (1989) has presented a formula for the 
Kronecker products of S-functions of hook shapes. His work has recently been extended 
(Remmel and Whitehead 1993) to include two-row shapes. This recent work may be 
substantially simplified and the results cast in an n-independent form using the reduced 
notation (Mumaghan 1938). 
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3. Reduced notation, symmetric series and vertex operators 

The concept of reduced notation for the symmetric group was introduced by Mumaghan 
(1938) and later used (Littlewood 1958a.b) for the calculation of inner plethysms and 
Kronecker products for the symmetric group S,. The significance of the reduced notation 
was further emphasized by Butler and King (1973). Extensions to the projective (or 
spin) representations have been discussed Guan Dehuai and Wyboume 1981, Salam and 
Wyboume 1989). A rigorous treatment in terms of the Hopf algebras of symmetric functions 
has been given for the case of tensor products of symmetric group representations (Thibon 
1991) and will be outlined below. 

The tensor irreducible representation (A] of S, may be labelled by ordered partitions 
(A) of integers where A t. n. In reduced notation the label (A} = ( A t ,  A2..  . . , Ap]  for 
S, is replaced by (A) = (Az,. . . , Ap). Given any irreducible representation ( f i )  in reduced 
notation it can be converted back into a standard irreducible representation of S. by prefixing 
it with a part (n - I f i l ) .  For example, an irreducible representation (21) in reduced notation 
corresponds to 13211 in S, or 19211 in Stz. It is just this feature that leads to an n- 
independent notation for S.. If n - ]fir > f i ~  then the resulting irreducible representation 
(n - Ifill is assuredly a standard irreducible representation of S,. However, if n - lfil -= f i ~  
then the irreducible representation (n - /PI, f i ]  is nou-standard and must be converted into 
standard form using S-function modification rules (Littlewood 1950). Thus in S, (21) 
becomes -[13] and in S, is null. 

The reduced label (p)  can be given a precise mathematical meaning: it has to be 
interpreted as the formal sum 

(the non-standard S-function s(n,pl = [n, /I] being zero for n << 0). The advantage of 
this point of view is that this series can be obtained by applying to s, a certain infinite- 
order differential operator, which is one of the so-called vertex operators commonly used 
in the representation theory of infinite-dimensional Lie algebras (see e.g. Kac 1990). Vertex 
operators also exist for S-functions, Q-functions and Hall-Littlewood functions (Hoffman 
1989, Jawis and Yung 1993, Jing 1991a.b. Salam and Wyboume 1991, 1992). The vertex 
operator has certain remarkable properties which makes it a very convenient tool for formal 
manipulations in reduced notation. We would hope the reader does not, in the following 
text, confuse the subscripted A, of standard A-ring notation with the use of A for partitions 
introduced earlier. One has 

(PL) = rl sII (4) 

where (with a parameter z in order to have more generally En ~ ~ . , ~ p "  = rzs,) 

where p i  i s  the kth power-sum symmetric function. Introducing the generating series for 
the complete and elementary symmetric functions 
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and the 'Foulkes derivative'. defined by 

(DFG, H) = (G, FH) 
where F. G, H are any three symmetric functions and ( , ) is the usual scalar product 
defined by (SA, se) = 8ie, one obtains for I'z the following convenient expression 

rz = uZ DA-~,. (6) 

(see e.g. C a d  and Thibon 1992). To interface between the reduced notation and the 
operator notation, we shall set, for a symmetric function F, (F) = rl F, so that for example 
(A) = (A). When F is a positive sum of S-functions, we will call the series ( F )  a stable 
character. 

Our symmetric functions are supposed to be polynomials in some (infinite) set of 
variables X = [ x ~ , x z , .  . . I ,  usually called 'the alphabet'. The effect of the operator Dozm 
on a symmetric function F ( X )  is to replace X by X + z, that is to replace p k ( X )  by 
p x ( X  + z) = p k ( X )  + zx.  Similarly DA-,(x) acts by replacing X by X - z ,  that is by 
substituting pk(X) by pk(X) - z k .  Thus, Dux is invertible, and DL1 = 4,. The operators 
are even multiplicative with respect to Littlewood-Richardson multiplication. It should be 
noted that they fulfil the above equation for the Foukes operators with F := uz. LZ. 

The notations X + z ,  X - 2  are particular instances of the so-called h-ring formalism. 
The concept of a A-ring, which is due to Grothendieck, is explained in Knutson (1972) and 
in Lascoux and Pragacz (1988). It provides a convenient way to handle what Littlewood 
called the S-functions of an arbitrary series, by allowing the coefficients of any power series 
to be considered as the homogenous (or elementary) functions of some virtual alphabet. 

One example for the application of vertex operators is Gamba's (1952) formula for 
character polynomials SA (cf Kerber 1992). These polynomials yield, evaluated at a 
(finite) sequence of non-negative integers (al.. . . ,a , ) ,  the character value ((A), p"),  p' := 
p y  . . . p p ,  and hence also code irreducible characters in reduced notation. This n- 
independence of character values has been observed by Frobenius (1900, 1904) and has 
been investigated by Mumaghan (1938,1951, 1955), Gamba (1952), Specht (1960). Wagner 
(1979) and others. Moms applied the concept to Schur @functions and Hall-Littlewood 
Q-functions (Moms 1963a, b). 

Gamba's formula can be deduced in the following way 

Obviously the last expression can be identifiedas the value of a polynomial B * ( X I . .  . . , X , )  
in a finite number of variables evaluated at X i  = ai, i < s, (and ai = 0 for i > r ) .  

Reduced notation refers to a stability property of the sequence s(~,A). n E Z, of (up to 
coefficient 0, f l )  irreducible characters. But the operator Di_, is an automorphism making 
homogeneous symmetric functions inhomogeneous. Also series of type 

((F)) :=u,F (7) 

are easier to handle and formulae involving them can be transformed to reduced notation 
using D,, DA-, = 1. This also reflects another type of stability displayed by the 
series h,",Al, n E Z. The hi being the symmetric functions associated with permutation 
representation by the Frobenius correspondence, we will refer to series of the form ((hi)) as 
stable permutation characters. In the language of character polynomials ((hi))  correspond 
to the so-called Young polynomials (Specht 1960, Kerber 1992). 
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4. Reduced Kronecker products 

A reduced Kronecker product (A) * (p) may be evaluated by the recursive relation 
(Littlewood 19584 Butler and King 1973, Wagner 1979) 

where / indicates an S-function skew (i.e. (Alp} = Ds,si, d Macdonald (1979)), a dot . 
is for Littlewood-Richardson S-function multiplication and a star * is the ordinary inner 
product. For example, in reduced notation 

(21) * (2’) = (51) + (5) + (43) + (421) + 3(42) + 3(41’) + 5(41) + 3(4) + (3’1) + 2(3’) 

+ (32’) + (321’) +6(321) +7(32) +3(313) +8(31’) +8(31) +3(3) + 
+w3) +3(2212)+7(221+5(2?)+(2l4)+5(213)+8(212)+6(21)+2(2) 

+ (1’) + 3(14) + 3(13) + 2(12) + (1). (9 )  

Equation (8) may be deduced from a more general result involving stable permutation 
characters (Thibon 1991) 

where (uY) ,  (uy) are adjoint bases of symmetric functions. 
Another (almost direct) consequence of (10) is the following formula of Mumaghan 

Let us retum to example (9). It reveals a hitherto unnoticed feature: that some reduced 
Kronecker products are self-associated in the sense that replacing every partition by its 
conjugate partition leaves the product invariant. We shall shortly establish the condition for 
a product to be self-associated. 

We also observe that Kronecker products often contain sequences of certain types 
of partitions whose multiplicities have a mimodal distribution when these partitions are 
presented in reverse lexicographic order. This is the case, for example, of the terms of the 
type (m, 1’) in the reduced product 

(14)*(10) 3 (21 1’)+(20 1’)+2(19 1*)+2(18 1*)+3(17 12)+3(16 12)+4(15 1*)+4(14 1’) 

+5(13 12) +4(12 1’) +4(11 1*)+3(10 I*) +3(91’)+2(81’) 

+ 2(71’) + (61’) + (51’). (12) 

The above Kronecker product involves a total multiplicity sum of 1701 distributed over 
377 distinct partitions effectively concealing unimodal sequences that also exhibit certain 
symmetries. These special distributions can be uncovered by developing explicit expressions 
for the coefficients cl,. We illustrate this in the next section. 
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5. Kronecker products for two-row shapes 

In terms o f  reduced notation two-row shapes become one-row shapes via the equivalence 

{n - k ,  k j  * {n - e, e )  - ( k )  ( e ) .  (13) 

Noting equation (8) we have 

F O  p=o 

= c;,, (A) for k > e. (14) 

The possible shapes for A are severely constrained. The number o f  rows cannot exceed 
three. The multiplicity to be associated with a given shape A can be readily determined 
by drawing the shape and then filling the cells, in accordance with the Littlewood- 
Richardson rule, with say k - p circles 0. e - p stars * and p - q diamonds 0, 
where k + e - p + q = A, + A2 + . . . + A,. Repeated ceUs are marked with dots . . 
Consider the shape characterized by the partition (m).  A typical filling is shown below: 

A 

i c k - p - t l c e -  p - + i t p - 9 + 1  

From which we may deduce immediately that c{x”,’Cs is the number of partitions of 
k + 8 - m into two parts ( p ,  Q) with p 2 q and e > p leading to 

C w r )  *) - ‘ e - k + m + 2 )  - d f o r k > m  (15~) 

CK;~) = 4(k  + e  - m + 2)  for m > k W b )  

and the coefficient symmetry 

c(W(O - (k) (O (m (m) -C(2k-m)  

([x/21 is taken to be the integer part o f  the division by 2). In a similar manner we find 

c;$; = e  - k + m f  1 fork  > m ( 1 6 ~ )  

c&;{ = k + e - m (16b) for m > k 

with 

and 
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with 

Equations (lSc), (16c) and (17c) reveal the unimodal multiplicity distribution of cettain 
types of partitions when sequenced in reverse lexicographic order together with certain 
symmetries of the coefficients. Equations (17aH17c) give a simple explanation of the 
result of equation (12). 

The above examples all involve simple two-part partition functions that admit a simple 
algebraic description. In more complex cases constrained partition functions arise with a 
series of subsidiary conditions. Thus to evaluate the multiplicity one draws the shape 
for (m,  n)  as before to give 

o l o l . 1 . l . l o 1 * l * 1 . 1 . l . 1 o l o 1 . 1 . 1 . l o  
*1*I .1.10101. l0~ 

Inspection of the diagram leads to the conditions 

n = r + s  t - p > r  e > p  p - q > s  a n d p + q = k + e - m - n .  

(184 

Furthermore, 

if r = O  then k + t - 2 p > n  (186) 

and hence the coefficients c;;; may be. evaluated by the following steps 
(i) List the partitions ( p ,  q )  subject to p > q and e > p .  
(ii) Associate with each partition ( p , q )  a set of two part partitions ( r l s )  that are 

compatible with the conditions of equation (18). 
(“’ (m.”) . 
111) IS equal to the total number of partitions (r, s) found in (ii). 
Thus to evaluate cF&) we obtain the values in table 1. 

Table 1. Partitions ( p .  q)  and (r, s) for evaluating c$:&,. 

From these we deduce that c&ij6) = 1 I . Note that equation (I8a) rules out any partition 
(r, s) for the first line in table 1 and that the partitions (r,  s) are not restricted to r 2 s. 
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11042) Table 2. P ~ t i o n s  (p ,  9 )  and ( r ,  s) for evaluafing c&i0. 

( p .  q )  Condition on I Condition on s (r ,  s) 

(16,4) O > r 2 = 2  1 O > s  * 
(15.5) 1 9 r 2 2 8 2 s  * 
(14.6) 2 > r 2 2  6 > s  (2.2) 
(13.7) 3 9 r 2 2  4 3 s  (2,2), (3. I )  
(12,s) 4 2  r 9 2  z > s  (4, O), ( 3 , l ) .  (2.2) 
(11.9) 5 > r > 2  02s (4.0) 
(10. IO) 6 2 r 2 2 - 2 2 s  L 

The evaluation of the coefficients c&{j') proceeds in an exactly similar manner. The 
diagram for the shape of (m, n, t) is drawn and the partition constraints determined to give 

n = r + s  & - p > r > t  p - q > t + s  p + q = k + l - m - n - t .  (19) 

Thus to evaluate c&(i6) we have the values in table 2, showing that c ~ ; ~ $  = 7. The first 
two lines, and the last, could have been anticipated to yield a null result. 

In one-row reduced notation the results (see equations ( 1 5 ~ )  and (1%)) are extremely 
simple, whereas for two- and three-row reduced notation there are subsidiary conditions to be 
considered. In most physical applications, due to spin considerations and the consequential 
Pauli exclusion principle, one-rowed reduced notation suffices. 

(1042) 

6. Self-associated reduced Kronecker products 

The self-associativity observed in equation (9) is a direct consequence of the following 
theorem. 

Theorem 6.1. For H defined by (A)  * ( p )  = (H) to be self-associated, it is necessary and 
sufficient that one of the partitions be a staircase partition and the other partition be at least 
self-conjugate. 

It is better to reformulate the propeIties. A symmetric function G is self-associated 
if and only if it can be written as a linear combination of products of symmetric power 
sums pa := pu, . . . pa, with la1 - t(a) even. Indeed, consider the involution o defined 
by osp = s,,, (cf Macdonald 1979). Then, the self-associativity of G, that is G = oG, is 
equivalent to 

( P m  G) = ( p m  oG) = (opm G) = ( - l ) ' + Y p u *  C) 

(since o p t  = (-l)k-lpk), from which the assertion follows. 
Now, the staircase S-functions belong to the subalgebra generated by the odd 

power sums. This follows for example from the Mumaghan-Nakayama rule, since the 
corresponding diagram has only odd hook lengths. In our formalism this amounts to 
considering the partial derivatives 

a 1 
S1.e-i ,.._. I )  = - S(" 0 - 1  . __ . . I )  +S(".n-l-k ,... ,I) +'..I k [  - 

- 
aPk 

and applying the modification rules. 
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This subalgebra is of considerable interest as it possesses as linear basis the Schur 
Q-functions (which correspond to the spin characters of the symmetric group). But the 
only Schur functions SA contained in this algebra are the staircase functions, the staircase 
partitions (n, n - 1,. . . 1) being the only partitions equal to their 2-cores (cf James and 
Kerber 198 1). 

The 'if part of the theorem follows from the next lemma: 

Lemma 6.2. Let F be a symmetric function contained in the subalgebra of Q-functions 
and let G be self-associated. Then H given by ( F )  * (G) = (H) is self-associated 

To prove this, consider Mumaghan's formula for the inner tensor product (11). As 
00, P. = nj(pcv, + 1) and 

DP. = capmL a,, . . . 
for some scalar c. the above considerations show that only t h m  OL with odd parts will 
contribute. But then D,F still belongs to the algebra of Q-Functions and Dp,G remains 
self-associated. As the product of Q-functions with a self-associated S-function remains 
self-associated, the lemma follows. 

It remains to prove the 'only i f  direction of the theorem. 
So let A and p be partitions of m and n, respectively. If one of the partitions is not 

self-conjugate, say f i ,  then SAS,,, the summand of degree m + n in Mumaghan's formula, 
contains a tem p y p ,  with la[ - t(a) odd. Hence the result cannot be self-associated. If 
both partitions are self-associated, but none of them is a staircase, then they differ from 
their 2cores. Hence sA contains a term p?pi ,  b > 0 maximal, and s,, a term p;pT, U 0 
maximal. Because of self-associativity, b and U are even and P ? + ~ P ; - I ,  p;+*p;- are not 
contained in the respective S-functions. 

Consider again Mumaghan's formula (11). We show that the sum on the right-hand 
side contains a term p ~ + " p ~ " - ' .  Because of degree considerations this can only happen 
for a = (2) ,  (1, 1). (1). But (Y = (1, l), (1) cannot contribute, for this would contradict the 
self-associativity. So the case ci = (2) remains and the contribution is 

o+u b+v-1 ( D , P ~ P ~ D , , P ; P , U ) P ~ / ~ = ~ ~  P I  P2 

which is non-zen, because of the choice of a ,  b,  U ,  v. So in this case again, H cannot be 
self associated. 

7. Reduced inner plethysms 

The concept of inner plethysms of S-functions was developed by Littlewood (1958a) who 
sketched some methods for their evaluation. A systematic procedure was given by Butler 
(1970) with further developments by King (1974). (For a modem account of inner plethysm 
in a Hopf-algebra formalism see Schatf and Thibon (1993).) A short tabulation has been 
given by Vanagas (1971). Most of the preceding results stem from Littlewood's observation 
that 

( m - 1 , I ~ o ~ l ~ ] = ~ m - k , l " ]  (20) 
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which in reduced notation becomes 

(1) €3 (1'1 = (1'). 

Littlewood's basic result can be extended to other simple cases such as 

( I )  @ (219 = (21') t (zl'-') + (P+9 + (19 

and 

(1) @ (31') = (2)(lkt') - (21'") + (Zl'-') + (1'") + (1'). 

However, generalizations to other single hook reduced partitions do not seem to yield such 
simple expressions. An arbitrary S-function (U] may always be expanded as a sum of 
elementary s y m m e ~ c  functions e, and hence as sums of products of S-functions of the 
type {Ik}. Thus any plethysm of the type (1) @ {p]  can always be reduced to sums of 
products of reduced Kronecker products of the type (lk) * ( 1 ' ) .  . . (cf Salam and Wyboume 
1989). The highest weight partition contained in ( I )  €3 {I) is necessarily (A) and thus 

( l ) @ l I I > ( I ) + . . .  (22) 

and hence any reduced irreducible representation (A) may be uniquely expanded as 

For example, one can readily establish that 
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where 6 = 2 if odd n, otherwise zero; which gives another method of evaluating reduced 
inner plethysms. It follows from equations (25) and (26) that 

(2) @ I A I  = (1) €4 ~(-1)’p1(121 @ WpI) IC/W Wa) 
Y 

where 

The above two results contain a phase factor showing that the method involves considerable 
overcounting. Specific calculation gives 

(2) €4 @11= (51) + (5) + (42) + 3(41) + 3(4) + (321) + 3(32) + 3(31*) + 7(31) + 4(3) 
+2(2 2 1) + S ( 2  2 )+ (213) +S(21’) +9(21)+5(2) + (l4)+3(l3)+4(I2)+2(1) 

(28) 
(21)€4121] = (71) +2(7) + (621) +5(62) +5(612) + 17(61)+ 14(6)+ (54) +2(531) +9(S3) 

+(522)+2(5212)+20(S21)+45(52)+(514)+ 10(513)+47(512)+81(51) 

+ 45(5) + (4*1) + 5(4’) + 3(432) + 3(4312) + 25(431) + 47(43) + 3(42’1) 

+ ZO(42’) + 2(4213) +30(4212) + 118(421) + 149(42) + 10(414) +64(413) 

+ 163(412) + 185(41) + 78(4) + 3(3’21) + 16(3’2) + (3’13) + 20(3212) 

+73(321)+82(32)+(323)+2(32212)+25(3221)+73(322)+(3214)+20(3213) 

+ 1 I8(32l2) +270(321)+235(32) +5(315) +47(314) + 163(313) +280(312) 

+ 240(31) + 83(3) + (Z41) +5(Z4) + 9(Z312) + 47(Z31) + 82(Z3) + 5(Z214) 

+45(2’13) + 149(Z212) +235(2*1) + 162(Z2) + (21‘) + 17(2lS) +81(214) 

+ 185(213) +240(212) + 173(21) +S5(2)+2(17)+ 14(16)+45(15) +78(14) 

+83(13)+55(12)+ 19(1)+2(0). (29) 

The above two results were extracted from a table of all reduced inner plethysms 
where the product of the weights of the two partitions are < 10. Copies of these tables are 
available as a T P l e  distributed via e-mail (bgw@risc.phys.torun.edu.pl). Two observations 
are immediately apparent. First, and not surprisingly, the multiplicities rapidly become very 
large, much more rapidly than for outer plethysms of the same weight. Second, the inner 
plethysm (21) @{21] is clearly self-associated, which at first sight is surprising. In that case 
both partitions defining the plethysm are staircase partitions. Indeed we shall shortly show 
that the necessary condition for a reduced inner plethysm (A) @ {p] to be self-associated is 
that the partitions (A) and (p) are staircase partitions but before that we remark upon the 
application of equation (22) to non-simple phase p u p s .  
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S. The non-simple phase groups of S,, and A,, 

We may denote a 3 j  symbol for a group g as (Apw)& where m is a multiplicity label 
and the ijk are indices. The symmetry properties of the 3 j  symbol is determined by its 
behaviour under simultaneous permutation of the representations Apu and the indices i j k  
with respect to the group S3. A problem arises when the three representations in the 3 j  
symbol are identical, e.g. (AAA)& In this case 

(AAAXcijk1 = Q W ) ( A A A X j k  (30) 

where 7r is an element of S3 that acts on the indices ijk and D”=(rr) is a matrix representing 
the permutation IT (Derome 1966, van Zanten and de Vries 1973, Butler 1974, King 1974). 
A group B will be a simple phase group if for every representation A of the group 

(AAA):,ijkl = cm(AAA)& (31) 
where I* = I .  

A group will be said to be a non-simple phase group if there exists a A such that the 
identity irreducible representation occurs in the mixed symmetry part of the Kronecker cube 
of A. In that case the matrix representing (211 is a 2 x 2 matrix and a simple + I  phase 
choice is not possible. In the case of the symmetric groups it suffices to examine the reduced 
inner plethysm (21) €3 (211 given in equation (29). For a given value of n each partition 
is made up to weight n and all resulting non-standard S-functions made standard. Thus for 
n = 5 the standardization rules give 

leading to 

I 

{-3612] = 4 5 )  (-261) =+{5]  1-16] = - {5 )  {SO) = +(5) 

5(-3612]+ 17(-261]+ 14{-16]+ 2{50] = (-5 + 17 - 14+ 2){5)  = 0. 
Continuing we can readily establish that S, is a simple phase group for n < 5. 

already noted (King 1974). For n > 6 we have from equation (29) the stable result that 

(32) 
establishing that indeed every symmetric group S, with n 2 6 is a non-simple phase group. 

Now consider the alternating group R, which is a subgroup of S,. Under the restriction 
S. + d$, the irreducible representations {!I] and (I”)  both yield the identity irreducible 
representation of A. Furthermore, the irreducible representation (n - 3,211 of S,, remains 
irreducible for all n 2 7, allowing us to conclude immediately that all the alternating groups 
A with n 2 7 are non-simple phase groups. The d, with n < 5 are certainly simple phase 
groups, leaving only the case of n = 6 to be considered. The irreducible representation 
13211 of s. decomposes into a pair of real irreducible representations {32llt and 1321)- 
of A. It follows from equation (29), standardized for n = 6, that for 

Expanding the plethysm we obtain 

For n = 6 we find (321) @ (21) 3 (61 and hence S, is a non-simple phase group as 

{n - 3,211 €3 (21) 3 Z [ n ]  

({321}+ + (3211-) @ (21) 2 2{61. (33) 

(34) 
But {321)+(321)- 3 {321]+ + (3211- and hence we must conclude that 

(35) 
The remaining irreducible representations of Ag may readily be seen to be simple phase, 
leading to the conclusion that 

(Wilt €3{21)) + (13211- €3 (211) + ({3211+ + {321)-)(321]+(321]- 3 2{6). 

W11* @ (211 3 161. 
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The symmetric groups S,, with n < 5 and the alternating groups An with n < 6 are simple 
phase groups ana' all other values of n correspond to non-simple phase groups. 

9. The expansion t ( n )  and the Butler-Boorman theorem 

We now give a formal proof of the Sfunction series expansion of &), as described by 
equation (25). This expansion is reminescent of the Butler-Boorman theorem (Butler 1970, 
Booman 1975) and we offer a short, and novel. proof of that theorem. The technique 
used can be applied in a variety of situations, and we illustrate it on two further examples: 
the stable analysis of the representation of S, in the space of Lie polynomials; and the 
computation of branching d e s  from a continuous group to the symmetric group. 

These computations are more conveniently carried out in the notation of Macdonald 
(1979) and Scharf and Thibon (1992). The inner plethysm of a symmetric function G by a 
symmetric function F is denoted by P(G) (instead of G 0 F in Littlewood's notation). 
Examples of the correspondence are (A) 0 { p )  = &(SA) and (A) @ { p )  = ip(I'lsl) 

Conceming .C(n), it is easier to solve first the corresponding problem for stable 
= :&((SA)) ?@((A)).  

pennutation characters, that is, to find F,, such that 

((hn)) = ~ t h  = k l u i h i ) .  

The result for (n) will follow, since 

(n) =01(s(n)  - s (~ - I ) )  = ((hn)) - ((hn-~)).  

We have the generating series 

~ 4 " ~ i h .  = W J ~  = ~~((lf q ) X ) .  
n>o 

Next, we exploit the A-ring formalism to rewrite it as 

The reason for this transformation is that we have, on the other hand, 

(Kirillov and Pak 1990, see also Thibon 1992) so that 

and 

Fn = (-1)'hi.q. 
i t Z j = n  
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Now, (n) = uih, - uihn-i = (F. - Fn-l)(ulhi), and to obtain the result in reduced 
notation, one just has to observe that &ulh l )  = DotG((l)). Thus, 

(37) 

and to conclude the proof of formula (25), it only remains to notice that Dole, = e, +e,-] ,  
D , h i = h i + h r - l + . . . + h l + l  andhie, =s~i,ii)+s~~+~,ii-i). Thisisbetter illustratedon 
an example, so let us take n = IO. We have 

h 

W )  = Do,(Fn - Fn-I) 

FIO = hlo - hsel + hse2 - h4e3 + h2e4 - e5 
Fg = h9 - h m  + h5e2 - h3e3 + h1e4 

L(10) = D ~ , ( F I o  - F9) 

= Da,[(hlo - h9) - (ha - hdel  + (hs - h s ) ~  

= hlo - h d e ~  + I) + hs(e2 + el) - hde3 + ez) 

- (h4 - h3)@3 + (hz - 

+ hz(t-4 + e3) - (es +ea) 

- esl 

= s l O - ( ~ 9 f ~ S l + ~ S ) f ( ~ 7 I + ~ 6 l l + ~ 7 + ~ 6 I )  

- ( ~ S l l + ~ 4 1 1 1 + ~ 5 1 f ~ 4 I 1 ) + f ~ 3 1 I 1 + ~ 2 1 I I I + ~ 3 1 1 + ~ Z l l l )  

- (s11111+ S1111) 

which is indeed the result predicted by (25). 
We now provide a simple proof of (23). As already observed this has the consequence 

that any character of the symmetric group S, can be expressed as an integral linear 
combination of irreducible characters indexed by hook partitions. This result is due to 
Butler (1970) and independently to Boorman (1975). In the language of A-rings, it means 
that the representation ring R(S,) of the symmetric group is generated as a X-ring by the 
single element [n - I ,  I ]  (or, which amounts to the same, by the class of the representation 
by permutation matrices [n - 1][1] = [n - 1,1] + [n]). However, this ring is far from 
being freely generated by one of these elements: a given symmetric function F of weight 
n has many different expressions of the form F = G(s,"-,,l)). This is due to the fact that 
[n - I ,  1 I is (n - 1)-dimensional, so that its kth exterior power vanishes for k 2 n. However, 
with stable characters or reduced notation, the expansion (23) becomes unique. The mason 
for this is given by (22), which is more easily established within the framework of stable 
permutation characters. 

Lemma 9.1. Let f i  be a partition of m. Then 

h^,(uihi) = 01 . [h ,  + F,,l 

where F,, is a (non-homogeneous) symmetric function of weight strictly less than m. 

Proof. By induction on the length Qb). For l (p )  = I, one has the explicit formula 
(Littlewood 1958a. cf Thibon (1992) for this formulation) 

h^dUlh i )=o i  hL,hk2...hkm =o i Ihm+Fml  
ki+Z&+-+mk.=m 
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where F, is clearly of weight < m. Now, let h,  = hkh,. Then, 

~ U I ~ I )  = [ui(h(r + Fd1* [ ~ ~ ( h k  + Fd1 

and using the expansion (IO) 

( u I F )  * (GIG) = UI ~ ( & , F ) ( & , G ) ( U ~  * U#) 

where (U,) and (US) are adjoint bases of symmetric functions, one sees that 

a.P 

= ui[hv + Ful 

with F, of weight < 1/11 + k - 1, as required. 
Now, by induction on IN(, we see that any series ulh, can be (uniquely) written as 

linear combination with integer coefficients of series of the form &(ulhl). As already 
pointed out, ~ ( u I ~ I )  = D,,,G((l)), so that this proves as well that any stable character ( F )  
has a unique expression of the form ( F )  = &((I ) ) .  

The above proof provides a simple algorithm for expressing the stable permutation 
characters in the form ulhx = GA(UI~I). The first examples are, denoting for shot? f ^ ( u ~ h ~ )  
by [fl 

h 

M2)) = IhZ - hll  

((hll)) = [hll - h d  

= [h3 - hl l l  

Kh)) = [hZl - 2 1 1  + h l l  

((hill)) = [hill + 3hll f h l l  

W 4 ) )  = [h4 - h2ll 

((h31)) =[h31 -hllI  + 4 h l l  

((h22)) = [ h z  - 2hz1 - h i l i  + 4hll - hz + 3hd 

((~zII)) =[h211 - ~ Z I  -3hl11 +9h11 +8hd 

( ( ~ I I I I ) )  = ~ I I I  -6hl11 + 11h11 + 18hll. 

There is an interesting formula for [hcl-,] = ( u l h ~ ) " ~ ,  that is 

where the S(m,  k) are the Stirling numbers of the second kind. This formula (which is 
equivalent to (5.5.19) in James and Kerber (1981)) is easily established by induction using 
formula (10) with U* = PA. Another easy but useful formula for computing with inner 
plethysms is 
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These identities can, for example, be applied to the computation of the character of the 
representation of the symmetric group in a free Lie algebra That is, let A = (a i ,  . . . , an} 
be a finite set of non-commuting indeterminates, let L(A) be the free Lie algebra genemtcd 
by A in the algebra of noncommutative polynomials C(A), and let the action of S, be 
defined by x(ai) = a,(i) extended to an automorphism of C(A). The character of the 
represenration of GL(n) in the homogeneous component L,(A) of degree m is well known 
(cf Reutenauer (1993)): it is the symmetric function 

where .u is the Moebius function. The characteristic of the action of S, on L,(A) is 
thus given by the inner plethysm lm(hlhn-1), which is the term of weight n in the series 
&,(u~hl).  These plethysms are. easily computed by hand up to weight 7 or 8 (in the basis 
of stable permutation characters) using the above formulae. The first ones are 

[&I = h I =  ((h -hi)) 
[e3] = ((hzl - h3 + hll)) 
[e41 = ((hz.11 -hz + a l i i  - h i  + ZII - hd) 
[ e ~ I = ( ( h z l l l + h ~ l  -h311 + h 3 2 + h 4 l ~ h 5 + ~ h l l l l + ~ h 1 1 1  +3hll)). 

These expressions are then readily converted into stable irreducible characters by 
applying the operator D,, and expressing the result in the basis of Schur functions. For 
example, with m = 4, 

Do, [ ~ Z I  I  - h ~ + 2 h 1  I I  -h21 +2h 11 - h ~ l  = 2+8~1+6~2+ 9s1 I +a3 + 5sz1+3s1 I I +s31 +SZI I  

which amounts to saying that the character of the symmetric group in the space of Lie 
polynomials of degree 4 is, in reduced notation, 

2(0) + S(1) +6(2) +9(11) +2(3) +5(21) +3(111) + (31) + (211). 
As a last illustration, we will show how to derive the branching mle for O(n) 3 S. 

(Salam and Wyboume 1989) by means of the stable character formalism. Using the 
orthogonal Schur functions (Littlewood 1950) 

where A-~(hz)  = z r ( - l ) ' e r  o hz = E,(-l)'[Z) c3 { Ir} ,  one has to compute the inner 
plethysm &(hihn-~) ,  Working with the generating series olhl and the reciprocity formula 
(cf Scharf and Thibon 1993) 

01 = DA- , (h tPA (W 

( b i h i ) .  G) = (F, G ( u d  (41) 
we have, F being any symmetric function, 

(&('JI~I) ,  F )  = ('4.. F(U1)) = (D,D~.,~A-,(h2)Sx. F(~I ) )  

so that 
h 

&(uihif = (DGsA)((~)) 
where (cf Littlewood 1950, Macdonald 1979) 

where the sum is over all self-conjugate partitions. 
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10. Staircase S-functions 

The S-functions indexed by staircase partitions r (n)  = (n, n - 1, . . .) possess a number 
of interesting properties (cf King ef a1 1981, King and Wyboume 1982) that have made 
themselves evident in the present work. In particular we now prove the self-associativity 
of inner plethysms involving staircase partitions. 

As already remarked in section 6 staircase functions are the only Schur functions 
contained in the algebra generated by the odd power sums. If we denote this subalgebra by 
J and the ideal generated by the even power sums pz, p4, . . . by I, then we have the direct 
sum decomposition I fB J of symmetric functions. This section is devoted to the proof of 
the following lemma. 

Lemma 10.1. Let F, G be two symmebic functions contained in the algebra generated by 
the odd powers sums. Then H given by (F) C3 G = (H) is also in this algebra. 

Proof. Because of an argument similar to that of lemma 6.2, it suffices to consider the 
case G := p m ,  m odd. That means that we will have to consider the action of the so-called 
Adams operator f i m  of inner plethysm. Its adjoint & with respect to the canonical scalar 
product is multiplicative with respect to the Littlewood-Richardson multiplication and obeys 

The operator @ := Do,&&-, is clearly a homomorphism and it follows by a simple 
computation that @ ( I )  E I, @( J )  C J .  As a consequence of the orthogonal decomposition, 
the adjoint \Ir of 0 also has this property and we may rewrite equation (44) as 

(0i*Di.,F3 U )  = ((&,‘J’DA-,F). U ) .  

But F is in I and so the symmetric function in the brackets (-). This proves 10.1. 0 

A direct consequence is the following corollary. 

Corollary 10.2. If (A) C3 { w )  = ( H ) ,  where A and p are staircase partitions, then H is 
self-associated. 

11. Concluding remarks 

The reduced notation outlined herein gives a powerful tool for investigating the stability of 
diverse properties of the symmetric group such as Kronecker products, irreducible characters, 
inner plethysms etc. A number of hitherto unnoticed features of these propflies have been 
exposed and formal proofs developed. The computational aspects of this paper were made 
using the program SCHIJR?, indeed it was this program that led to the initial conjectures 
that, in turn, led to the content of this paper. 

t SMUR is an interactive program for calculating the properties of Lie groups and symmetric functions by Brim 
0 Wyboume. distributed by S Christensen. PO Box 16175, Chapel Hill, NC 27516 USA. Emaik stevec@wri.com 
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